ВЫГОДНАЯ ИНВЕСТИЦИЯ В ЭКОЛОГИЮ ЗАВТРАШНЕГО ДНЯ!

(0562) 322-722
+38 (067) 7766860

  • Продажа гранулы
  • Закупка сырья
  • Переработка сырья
Главная Статьи Неорганические полимеры

Неорганические полимеры

В современном мире практически нет человека, который бы не имел хоть какого то представления о полимерах. Полимеры идут по жизни вместе с человеком, делая его жизнь все более удобной и комфортной. При упоминании о полимерах первые ассоциации будут связаны с синтетическими органическими веществами, так как они больше находятся на виду. Полимеры природные – натуральные органические вещества – хоть их и больше в окружающем нас мире, в ассоциативном восприятии человека отходят на второй план. Они окружают нас всегда, однако никто не задумывается о природе происхождения флоры и фауны. Целлюлоза, крахмал, лигнин, каучук, белки и нуклеиновые кислоты – основной материал, используемый природой для сотворения окружающего нас животного и растительного мира. И уж совсем никто не будет воспринимать как полимеры драгоценные камни, графит, слюду, песок и глину, стекло и цемент. Тем не менее, наукой установлен факт полимерного строения многих неорганических соединений, в том числе и перечисленных выше. Полимерные вещества состоят из макромолекул. При образовании полимеров большое число атомов или групп атомов связываются между собой химическими связями – ковалентными или координационными. Полимерные макромолекулы содержат десятки, сотни, тысячи или десятки тысяч атомов или повторяющихся элементарных звеньев. Сведения о полимерном строении были получены при исследовании свойств растворов, строения кристаллов, механических и физико-химических свойств неорганических веществ. В подтверждение вышесказанному следует отметить, что имеется достаточное количество научной литературы, подтверждающей факт полимерного строения некоторых неорганических веществ.

Логичным будет замечание: почему так много есть информации о синтетических органических полимерах и так мало о неорганических. Если есть неорганические полимерные вещества, то что конкретно они из себя представляют и где они используются? Выше были приведены несколько примеров неорганических полимеров. Это известные вещества, которые знают все, вот только мало кто знает, что эти вещества можно причислить к отряду полимеров. По большому счету обывателю все равно можно ли отнести графит к полимерам или нет, что касается драгоценных камней, то для кого-то это может быть даже оскорбительно, равнять дорогие украшения с дешевой пластмассовой бижутерией. Тем не менее, если есть основания называть некоторые неорганические вещества полимерами, то почему бы об этом не поговорить. Рассмотрим некоторых представителей таких материалов, остановимся более подробно на самых интересных.
Для синтеза неорганических полимеров чаще всего требуются очень чистые исходные вещества, а также высокие температура и давление. Основными способами их получения, как и органических полимеров, являются полимеризация, поликонденсация и поликоординация. К простейшим неорганическим полимерами относятся гомоцепные соединения, состоящие из цепей или каркасов, построенных из одинаковых атомов. Кроме известного всем углерода, являющегося основным элементом, участвующим в построении практически всех органических полимеров другие элементы тоже могут участвовать в построении макромолекул. К таким элементам относятся бор из третьей группы, кремний, германий и олово из четвертой группы, куда как раз входит и углерод, фосфор, мышьяк, сурьма и висмут из пятой группы, сера, селен теллур из шестой. В основном гомоцепные полимеры, полученные на основе этих элементов, используются в электронике и оптике. Электронная промышленность развивается очень высокими темпами и спрос на синтетические кристаллы давно уже превышает предложение. Особо, все же, следует отметить углерод и неорганические полимеры которые получают на его основе: алмаз и графит. Графит, известный материал, который нашел применение в различных сферах промышленности. Из графита получают карандаши, электроды, тигли, краски, смазки. Тысячи тонн графита идут на нужды атомной промышленности благодаря его свойствам замедлять нейтроны. В статье мы остановимся подробнее на самих интересных представителях неорганических полимеров – драгоценных камнях.
Самым интересным, пафосным, любимым женщинами представителем неорганических полимеров являются алмазы. Алмазы – весьма дорогостоящие минералы, которые также можно отнести к неорганическим полимерам, в природе их добывают пять крупных компаний: «DeBeers», «Alrosa», «Leviev», «BHPBilliton», «RioTinto». Именно компания «DeBeers» создала репутацию этих камней. Искусный маркетинг сводится к слогану, «Бриллиант – это навсегда». «DeBeers» превратила этот камень в символ любви, благополучия, власти, успеха. Интересен тот факт, что алмазы в природе встречаются достаточно часто, например сапфиры и рубины, более редкие минералы, однако ценятся они ниже алмазов. Самое интересное это ситуация, которая сложилась на рынке природных алмазов. Дело в том, что существуют технологии, позволяющие получить синтетические алмазы. В 1954 году исследователь компании «General Electric» Трейси Холл изобрел аппарат, который позволял при давлении 100000 атмосфер и температуре свыше 2500ºС из сульфида железа получать кристаллы алмаза. Качество этих камней было с ювелирной точки зрения невысоко, однако твердость была такая же, как у природного камня. Изобретение Холла было усовершенствовано и в 1960 году «General Electric» создал установку, в которой можно было получать алмазы ювелирного качества. Негативным моментом было то, что цена синтетических камней была выше природных.
На данный момент существуют две технологии синтеза алмазов. Технология HPHT (high pressure/high temperature) – синтез алмазов в сочетании высокого давления и высокой температуры. Технология CVD (chemical vapor deposition) – технология химического осаждения пара, считается более прогрессивной и позволяет выращивать алмаз, как бы моделируя природные условия его роста. Обе технологии имеют достоинства и недостатки. Кампании их использующие решают недостатки технологий, применяя свои собственные изобретения и разработки. Например, еще в 1989 году группе советских ученых из Новосибирска удалось снизить давление синтеза до 60000 атмосфер. После распада Советского Союза разработки в области синтеза алмазов не были прекращены благодаря многим заграничным инвесторам, заинтересованным в получении технологии дешевого синтеза качественных драгоценных камней. Например, «DeBeers», дабы не потерять возможность контролировать рынок финансировала работы некоторых ученых. Некоторые частные предприниматели купили в России оборудование по синтезу алмазов, например процветающая сейчас американская компания «Gemesis» начала с того, что приобрела в России в 1996 году за 60000 долларов установку для выращивания алмазов. Сейчас «Gemesis» производит и продает алмазы редких цветов: желтые и синие, причем разница в цене между этими и точно такими же природными камнями достигает 75%.

Другая крупная компания, синтезирующая алмазы – «Apollo Diamond», совершенствует технологию HPHT, проводя синтез камней в газовой атмосфере определенного состава (технология-симбиоз HPHT и CVD). Такой метод выводит «Apollo Diamond» на рынок ювелирных камней при этом, качество синтетических алмазов, выращиваемых по такой технологии очень высоко. Геммотологам все труднее отличить синтетические камни от природных. Для этого требуется комплекс анализов, на достаточно сложном и дорогостоящем оборудовании. Синтетические ювелирные алмазы «Apollo Diamond» практически невозможно отличить от природных минералов стандартными методами анализа.

Мировая добыча алмазов составляет сейчас 115 миллионов карат или 23 тонны в год. Теоретически этот гигантский рынок может упасть при этом репутация алмазов как драгоценных камней будет потеряна навсегда. Фирмы-монополисты вкладывают средства в стабилизацию ситуации и контроль рынка. Например, проводятся дорогостоящие маркетинговые компании, скупаются патенты на технологии искусственного изготовления алмазов для того чтобы эти технологии никогда не были внедрены, на фирменные бриллианты выдаются сертификаты и паспорта качества, подтверждающие их природное происхождение. Но удержит ли это прогресс технологии синтеза?

Заговорив об алмазах, мы отвлеклись на блеск драгоценных камней ювелирной промышленности, но следует указать и на промышленные камни. В данном случае большинство предприятий, занимающихся выращиванием алмазов, работает в основном для нужд электронной и оптической промышленности. Рынок промышленных камней, возможно, не так интригует как рынок ювелирных, но, тем не менее, он огромен. Например, основной доход «Apollo Diamond» - синтез тонких алмазных дисков для полупроводников. Кстати, сейчас установку для синтеза алмазов производительностью порядка 200 кг алмазов в месяц можно приобрести за 30 тысяч долларов.

Другим представителем драгоценных камней является рубин. Первый синтетический рубин появился на свет в 1902 году. Его синтезировал французский инженер Вернейль, расплавив порошок окиси алюминия и хрома, который потом кристаллизовался в шестиграммовый рубин. Такая простота синтеза позволила относительно быстро развить промышленное производство рубинов по всему миру. Камень этот очень востребован. Ежегодно в мире добывают порядка 5 тонн рубинов, а потребности рынка исчисляются сотнями тонн. Рубины нужны часовой промышленности, нужны при производстве лазеров. Предложенная Вернейлем технология впоследствии дала предпосылки для синтеза сапфиров и гранатов. Наиболее крупные производства искусственных рубинов находятся во Франции, Швейцарии, Германии, Великобритании, США. Экономика производства такова. Львиную долю себестоимости съедают энергетические расходы. При этом себестоимость синтеза килограмма рубинов 60 долларов, себестоимость килограмма сапфиров – 200 долларов. Рентабельность такого бизнеса очень высока, так как закупочная цена на кристаллы минимум в два раза выше. Здесь следует учитывать ряд факторов, таких как тот, что чем больше выращиваемый монокристалл, тем себестоимость его ниже, также при производстве из кристаллов изделий, цена их будет намного выше, нежели цена продаваемых кристаллов (например, производство и реализация стекол). Что касается оборудования, то российские установки для выращивания кристаллов стоят около 50 тысяч долларов, западные на порядок дороже, при этом срок окупаемости организуемого производства в среднем составляет два года. Как уже говорилось потребности рынка в синтетических кристаллах коллосальны. Например, очень востребованы сапфировые стекла. В мире синтезируется порядка тысячи тонн сапфиров в год. Годовые потребности производства доходят до миллиона тонн!
Изумруды синтезируют исключительно для нужд ювелирной промышленности. В отличие от остальных кристаллов получают изумруд не из расплава, а из раствора борного агидрида при температуре 400оС и давлении 500 атмосфер в гидротермальной камере. Любопытно то, что добыча природного камня составляет всего 500 килограмм в год. Синтетические изумруды в мире производят также в не таком большом количестве, как остальные кристаллы, порядка тонны в год. Дело в том, что технология синтеза изумрудов малопроизводительна, однако рентабельность такого производства на высоте. Производя около 5 килограмм кристаллов в месяц при себестоимости 200 долларов за килограмм, цена продажи изумрудов синтетических практически равна цене природных. Стоимость установки для синтеза изумрудов составляет порядка 10 тысяч долларов.
Но самым востребованным синтетическим кристаллом является кремний. Пожалуй, он даст фору любому драгоценному камню. На данный момент кремний занимает 80% всего рынка синтетических кристаллов. Рынок испытывает дефицит кремния ввиду стремительного развития высоких технологий. На данный момент рентабельность производства кремния превышает 100%. Цена килограмма кремния составляет порядка 100 долларов за килограмм, при этом себестоимость синтеза достигает 25 долларов.

Сверхчистый кремний используется в качестве полупроводника. Из его кристаллов делают солнечные фотоэлементы, имеющие высокий коэффициент полезного действия. Кремний, как и углерод, может создавать длинные молекулярные цепи из своих атомов. Таким образом получают силан и каучук, обладающий удивительными свойствами. Несколько лет назад весь мир взбудоражило сообщение об опытах американского инженера Вальтера Роббса, которому удалось изготовить пленку из силиконовой резины толщиной 0,0025 сантиметра. Этой резиной он обтянул клетку, в которой жил хомяк, и опустил хомяка в аквариум. В течение нескольких часов первый в мире хомяк-подводник дышал кислородом, растворенным в воде, и был при этом бодр, не проявлял признаков беспокойства. Оказывается, пленка играет роль мембраны, выполняя те же функции, что и жабры у рыб. Пленка пропускает внутрь молекулы газа жизни, а углекислый газ при этом через пленку вытесняется наружу. Такое открытие делает возможным организацию жизни человека под водой отодвигая в сторону баллоны с дыхательной смесью и кислородные генераторы.

Кремний выпускается трех видов: кремний металлургический (MG), кремний для электронной промышленности (EG) и кремний для производства солнечных батарей (SG). Ввиду череды энергетических кризисов усиленно внедряются альтернативные технологии получения энергии. К таковым относится преобразование солнечной энергии в электрическую, то есть, использование солярных установок, работающих на солнечных батареях. Важной составляющей солнечных батарей является кремний. В Украине на Запорожском титаномагниевом комбинате производился кремний для солнечных батарей. При советском Союзе это предприятие давало 200 тонн кремния, при общесоюзном объеме производства 300 тонн. О том, как обстоит дело с производством кремния в Запорожье сейчас автору ничего неизвестно. Стоимость организации современного производства поликристаллического кремния для нужд энергетической промышленности мощностью 1000 тон в год составляет около 56 миллионов долларов. Синтез кремния для различных нужд во всем мире по востребованности занимает первое место и еще долго будет удерживать эти позиции.

В статье мы рассмотрели только некоторых представителей неорганических полимеров. Быть может многие вещи, рассказанные выше, для кого-то были восприняты с удивлением и неподдельным интересом. Кто-то по-новому взглянул на понятие философского камня, пусть не золото, но драгоценные камни из невзрачных оксидов металлов и других непримечательных веществ получать все-таки можно. Надеемся, что статья дала повод к размышлениям и как минимум развлекла читателя интересными фактами.

Автор статьи : Третьяков А.О., к.т.н., Украинский государственный химико-технологический университет г. Днепропетровск